

Set: Hub-and-Spoke
Cryptographic Payment Channels

v0.0.1
Nathan Ginnever: ​nathan@finalitylabs.io

Abstract
Here we outline the Set-Payment channel protocol (In a later paper we incrementally extend Set to
general state over virtual channels). Set is built upon insights from other “layer2” payment scalability
solutions for decentralized cryptocurrency ledgers, namely, Lightning Network[2], Raiden[5],
state-channels (Machinomy_v2[4], Jeff Coleman[6], etc) and Perun[3] virtual channels. This paper
explores a variant of Perun[3] that is built for human interactions (tipping, micropayments for online
service, gambling etc) in a payment channel facilitated by a hub. Each connection to the hub is capable of
opening many concurrent payment channels with any other peer to the hub without any on-chain
transaction costs.

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 1
Nathan Ginnever: nathan@finalitylabs.io

mailto:nathan@finalitylabs.io

Introduction
Perun[3] virtual channels is a commitment based approach to the Lightning/Raiden network hash-locked
transactions when considering a hub and spoke payment network (see Perun Networks[7] for their
implementation of routing, we do not explore routing in Set). The main difference provided by the
Perun[3] research group over hash-locked hubs is the ability for the intermediary to “drop out” of the
balance updates between the parties they are escrowing funds for. The hub is not required to witness
the balance updates between the parties since the hub is only concerned with the opening and final
states of the channel it is escrowing funds for. This improves bandwidth requirements, privacy, and
generally simplifies the payment channel model offered by hash-locked transactions. However, Perun[3]
style virtual channels require that the channel may only live for a short period of time. More specifically,
all parties involved in a single hop payment must agree to how long they have to make payments. Set
channels waives this requirement to allow any party to choose when to close a virtual channel.

Summary of Our Contribution and Its Applications
The main contribution offered by Set-Payment channels is the elimination of the requirement that virtual
channels have a validity timeout and must therefore require clients to track when a virtual channel must
be closed. In Perun[3], you may not close a virtual channel before or after a validity time, it needs be
closed at that time for the system to continue, while Set channels may be closed at anytime both in the
happy and byzantine cases. We consider this a different approach that allows for different trade-offs and
a system of short lived channels may be more beneficial for machine-to-machine applications (where a
protocol is defined in the client for opening/closing channels automatically. This assumes harder liveness
requirements than in more human interactive systems). Some applications may benefit from the ability to
trust that the intermediary will allow for a payment channel to be open as long as they can in order to
collect fees. We also reduce the number of messages required to close a virtual channel in the happy
case (todo: do a comparison of protocols to justify this claim) and provide less network traffic to the hub
since channels may live forever (or until either Alice, Bob, or Ingrid signal to close). To maintain
consistency with Perun research we will extend the same notation. Again assume that Alice and Bob
both have “​Ledger Channels​” (lc) opened on the Ethereum[1] (or other efficiently complex stack based)
blockchain with an intermediary hub Ingrid. We will construct “​Virtual Channels​” (vc) over these lc
channels in the same way as Perun[3] and assume most ledger channel procedures are the same (some
are not). Where we deviate is the protocol specification for closing a virtual channel constructed “over”γ
a ledger channel in the byzantine and happy cases laid out below.β

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 2
Nathan Ginnever: nathan@finalitylabs.io

Channel Validity
Let us first further explore the idea of channel validity provided by Perun[3] so that we may focus on the
area of difference in Set payment channels. It is noted that Perun[3] devised the concept of channel
validity to ensure that Ingrid (the intermediary) does not have to worry that her coins will be locked up
forever in a virtual channel. This is due to the way that the protocol of virtual channel closing is
structured. Specifically, it is expected that Ingrid must hear of a ​vc-close​ before she is able to construct a
ledger channel proof of how to settle Alice and Bob’s balances and all parties must wait for the virtual
channel to expire before any closing operations (off-chain or on-chain) can begin. A pre-agreed upon
timeout for the virtual channel ensures that Ingrid may get her coins back when the channel time expires
and provides a default final state to the ledger channel. It also provides an easy way to reason about
what channels are open and when it is valid to close on-chain in the event that byzantine settling is
required. We replace this with merkle trees and an agreement between ledger channel parties of the
number of open virtual channel during any given state update. As quoted by Perun[3] “Since they (virtual
channel) cannot be closed earlier (validity timeout), there is no separate “closing” procedure for the virtual
channels, and instead both opening and closing procedure are described below”. We can look deeper
into the protocol governing opening/closing of virtual channel constructs below.

Perun Open-vc Protocol
Once all parties all-users {Alice, Bob, Ingrid} have signed a message ​m​ to open a virtual channel γ.P ∈
in the form of a state update to the ledger channel within 2 rounds, the balance is reduced in each
agreement to reflect the bond for the virtual channel in that state update. If it is assumed that opening
and closing a virtual channel must take unanimous consent to update the ledger channel then it couldβ
be impossible for Ingrid to close without a validity timeout. It is allowed all-users time validity + 5.γ .γ Δ
+1 to settle the final state of . If end-users {Alice, Bob} are truely timed out, then the initial state ofγ .γ S0

that Ingrid knows about will win the settlement and the result will be a total refund for all-users. Weγ .γ
observe that Ingrid could simply supply this initial state of to the ledger channels and beforeS0 γ βA βB
a validity timeout (as this state will be contained in the opening virtual channel agreement of Set
channels). Given that Alice and Bob’s signatures hold the final verdict of the state update on and βA βB
to close , we break away from the consensus protocol of normal state channels on and suchγ βA βB
that .end-users may prove an update that is strictly announcing that they have a higher sequenceβ
virtual channel state update to settle the ledger channel with. The problem of updating the state on βA
and has now become one of intent to close with a latest state, and we reason this may be settledβB γ
on-chain. It is possible that Ingrid or a network of bounty hunters has heard of some of and maySi γ
attempt to settle with a more appropriate balance. In either case the net outcome for Ingrid remains
neutral as long as the same of is provided to and .Si γ βA βB

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 3
Nathan Ginnever: nathan@finalitylabs.io

Set Open-lc/vc and Update Protocol
Here we describe the opening and update protocols for ledger channels and virtual channels. We simply
extend more information in the string update annotation that ledger channel participants agree upon
during state transitions.

Let be a version number for . A version of (or a single state), (,) is a unanimously ω ∈ ℕ β δ δ
︿

 , α, σω
signed update to where contains both parties signatures in . The update annotation stringβ σ β α
contains information on the agreement happening during a given update. In the Set-Payment protocol,
this string contains a root hash of all open virtual payment channels initial state, and a counter marking
the number of open virtual channels. A simple hash of a single virtual channel to show the agreement
and initial state of an open virtual channel is possible if you only wish to open one at a time. We elect to
use a root hash of a merkle tree of open virtual channel for concurrent channel operations.

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 4
Nathan Ginnever: nathan@finalitylabs.io

The opening protocol for ledger channels and updating virtual channels is the same as Perun[3] so we
omit this part below.

Update ledger channel

1. P (the-initiator) generates a message (​update​, ​id​, ,) where ​id ​is some channel identifier and waitsθ α δ
to hear from their counterparty.

2. Upon receiving an update, P .end-users “the confirmer” will validate the checking that it is equal ∈ δ δ
︿

to accept for an updated balance and a reshuffled merkle root that contains the initial state of anyδ
︿P

 μ︿
open . Consider the two cases. γ

a. There are no open such that is equal to an empty byte array. γ μ

b. There are one or more open such that is equal a byte array representing the root hash of a γ μ
merkle tree (see merkle tree protocol from Raiden[5] for further details).

3. If P receives (update-ok) message from the environment they produce sig to confirm the update. σ︿

Open virtual channel ​: γ

1. A (​vc-open​) message is generated triggering .end-users to create a state update to .Ingrid that γ γ
contains their opening certificates (signed initial state of). γ

2. P .end-users lets (,) be the latest state of that P is aware of. P generates a new state of the ∈ γ δ
︿P

 ωP δ

channel that is equal to on all elements aside from the adjusted balance and containing aδ
︿P

 α
rebalanced merkle root with contained.μ γ0

3. .Ingrid receives the (​vc-open​) message and waits for both .end-users state update (​update​, ​id​, ,). γ γ θ α

a. .Ingrid receives correct (​update​, ​id​, ,) from both .end-users. She emits (vc-opened) and γ θ α γ
waits to hear a (​vc-close​) message from the environment.

b. Otherwise she outputs (​vc-not-opened​).

4. P .end-users waits to hear of an opening certificate from .Ingrid in the form of a signature on the ∈ γ γ
ledger channel update presented by .end-users. The may now enter an idle state and pass messages γ
over and close at anytime. γ

Figure 1: Procedures for: (A) open virtual channel (B) update ledger channel (C) update virtual channel
(omitted)

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 5
Nathan Ginnever: nathan@finalitylabs.io

Set Close-lc/vc Protocol

Happy
At any point in time during an open virtual channel , any .all-users {Alice, Bob, Ingrid} may present aγ γ
ledger channel update containing a rebalance of the balances of by applying := Win()β θ , WW γ.Alice γ.Bob
(simply selecting the highest sequence update they know of in) to their respective or that willγ βA βB
close the virtual channel. It is up to .end-users to decide if they wish to close the virtual channel withβ
given balance adjustments. In the case of Ingrid, she does not have to wait to hear of updates to both βA
and before she signs as long she is confident that she is signing the latest state of . However, if aβB γ
later state of becomes known after Ingrid signs a ledger channel update then she may lose a part ofγ
her bond. Ingrid may wait until Alice and Bob send agreeing final states in their ledger channelγ
updates before she signs to be sure that her channel balances nets neutral.The update should also come
with an adjusted update annotation that removes the open virtual channel data from the merkle root.

Byzantine
We will define a “close-vc” protocol that will give Ingrid an exit path to remove the validity timeout. Our
contribution is noticing that you can use a two phase dispute process to ensure that the latest state of a
virtual channel is chosen to rebalance ledger channel state after a settlement process. In this case, Ingrid
would send her last known state of the virtual channel to the ledger channels, and . This will likelyβA βB
be the initial state of the virtual channel that would just undo the channel opening. It is important that
this update to the ledger channel state only be allowed to update a closing virtual channel balance and
no other state in the ledger channel (i.e a regular ledger channel balance update transaction or opening a
new channel) since the second dispute no longer obeys consensus between {Alice} or {Bob} and {Ingrid}
but rather obeys the consensus of {Alice} and {Bob}. The ledger channel is programmed to check this
state update for validity since it cannot be assumed correct without the ledger channels end-users.β
({A/B} and {Ingrid}) consensus.

Ledger Channel Settling
There are two functions to update the ledger channel state in byzantine events. They are sequential
events and the latest signed update must be initiated after settling the last known state of the ledgerγ
channel.

Update lc (start lc settlement)

The purpose of updateLC() is to provide both parties a settlement time for determining the latest state of
the ledge channel. This will allow any open virtual channel over that ledger channel to then be settled.
The updateLC function requires both parties .all-users {Alice or Bob} and {Ingrid} are present in toβ σ
initiate a challenge period with . We observe again that it should take time … to settle .δ

︿

δ
︿

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 6
Nathan Ginnever: nathan@finalitylabs.io

settleVC

As described above, the purpose of the settleVC() is to allow time for the latest known state of to beγ
settled on-chain if the virtual channel initial state is contained in the agreed upon root hash of this
update. To determine if a state update to a virtual channel is a progressive iteration of the initial state, we
use an identifier that is in the agreed upon initial state. This will later allow a finalization (wake up
function) to take the balance parameters and move the balances of Alice/Bob and Ingrid back into the
ledger channel. Each higher sequence state of the closing virtual channel presented to the on-chain
contract will extend the challenged time by a predetermined length as is with any state channel
challenge. At this point Alice and Bob may hold Ingrid’s funds in escrow as long as they are willing to pay
expensive computational fees for doing so. We could limit the second settlement phase here to only be
available for a finite amount of time. This would ensure that Alice and Bob do not sign state updates to
the virtual channel infinitely, however the costs of doing so should prevent them from doing this in the
first place so we do not limit the challenge period on virtual channel state settlement.

Finalization Protocol

Once both challenge times have passed a wake up function may be called by anyone that will rebalance
the ledger channel state based on the locked in virtual channel state. This will decrease the number of
open channels marked in the smart contract from the ledger channel settlement phase. Any remaining
open virtual channel may now start a settlement phase off of the settled ledger channel as long as they
pass the merkle proof check of inclusion. If at any point the number of open virtual channel reaches 0
(either through closing byzantine virtual channels on-chain, or supplying a happy case closed state with
no open virtual channels) then the contract will pay out based on the ledger channel final state and close
the ledger channel.

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 7
Nathan Ginnever: nathan@finalitylabs.io

Closing a ledger channel is the same as Perun[3] aside from checking that the state update has an
agreed upon closing flag and settles on their being no open virtual channels in the state update, so it is
omitted.

Closing virtual channel

1. At any point, P .all-users may present updates to channel with identifier .subchan(P) that settle ∈ γ βP γ
 with := () the latest known state of that P has received from := γ W P , υ , α , σ γP P P P γ P ′ γ

.other-party(P).

2. Within a reasonable time Ingrid decides to close the channel . γ

a. If .Ingrid receives correctly formatted message (​vc-close​, ,) from both .end-users γ W P SP γ
she goes on to step 3.

b. If she does not she goes on to step 4

3. Party .Ingrid learns of the latest state (,) from either .end-users or from the contract γ W P SP γ
settlement in step 4. She lets her update to her ledger channel contain a rebalance of and balance βP μ′
updates based on := Win() state balance. Ingrid emits (​vc-close​) and everyone is back inθ , W W γ.Alice γ.Bob
idle state for other ledger channel operations.

4. Any P .all-users may start a forced-reply message to the contract with their latest state (, ∈ γ Δ βP δ
︿P

) which contains the initial state of the challenged in . This forces both .end-users to close all ωP γ μ β

open virtual channels and settle exit the ledger channel.

5. Once the latest state of merkle roots in is settled, another forced-reply message may present the βP Δ
latest known state of , (,). γ W P SP

6. A wake up call is sent to settle the balances of the virtual channel back into the ledger channel on-chain
and the number of open channels is decremented. Any other open virtual channels may repeat step 5
until no open channels are left and the ledger channel may be closed.

Figure 2: Procedures for: (A) close virtual channel (B) close ledger channel (omitted)

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 8
Nathan Ginnever: nathan@finalitylabs.io

vc-State Validity Checks
1. Initial state contained in ledger channel merkle root and update state is sequentially higher.

2. Signature on initial and update state match Alice/Bob

3. Balance on update state does not overstep Ingrid’s bonds

Example Scenarios
For ledger channel , βP

Let = (,)S0 δ0 , α , σω0 0 0

= 0 // lc sequence numberω

= { balanceAlice, balanceIngrid, 0x0 } // lc state containing an empty vc rootα

= sigs { Alice/Bob, Ingrid } // Unanimous consentσ

 State = { balanceA, balanceI, 0x0, numOpenVc = 0 }

For virtual channel , γ

Let = (,)S0 δ0 , α , σω0 0 0

= 0 // vc sequence numberω

= { balanceAlice, balanaceBob, bondIngrid, addressB, addressA, addressI } // vc stateα

= sigs { Alice/Bob, Ingrid } // Unanimous consentσ

State = { 0x1239, 0, addressA, addressB, addressI, balanceA, balanceB, bondI }

Open vc: For ledger channel , βP

Let = (,)S1 δ1 , α , σω1 1 1

Let .root = keccak256(.)α γinit α

= 1ω

= { adjustedBalanceAlice/Bob, adjustedBalanceIngrid, 0xd3adbe4f }α

= sigs { Alice/Bob, Ingrid }σ

State = {balanceA/B-vcBalanceA/B, balanceI-vcBalanceA/B, 0xd3adbe4f..., numOpenVc = 1}

where 0xd3adbe4f... = keccak256()γinit

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 9
Nathan Ginnever: nathan@finalitylabs.io

Update vc: For virtual channel , γ

Let = { 0x1239, 0, addressA, addressB, addressI, balanceA, balanceB, bondI }S0

Let = { 0x1239, 1, addressA, addressB, addressI, balanceA, balanceB, bondI }S1

...

Close vc: For ledger channel , βP

Let = {balanceA/B+vcBalanceA/B, balanceI+vcBalanceA/B, 0x0, numOpenVc = 0}S2

Virtual Channel is now closed once​ is signed by .all-users: {Ingrid, Alice} and {Ingrid, Bob}.S2 β

Balance Update of lc state based on vc state

 : [Alice (), Ingrid ()]βA → xy′A + ′A → xy′I + ′B

 : [Ingrid (), Bob ()]βB → xz′I + ′A → xz′B + ′B

Considerations
Re-entry (back to happy case transactions off chain from a byzantine situation) path for Alice and Bob (if
any) if they notice Ingrid tried to settle the vc requires a lot of client side heavy lifting to reshuffle the the
lc state to be accurate to what has already been closed on-chain. Keep in mind Set allows any party to
signal to everyone else they wish to close a channel without their consent.

This is assumed to only happen in byzantine cases thus we may assume a punishment if the party trying
to close is responded to. Ingrid should wait a sufficiently long enough time before trying to force settle a
byzantine vc as to reduce the odds of getting punished arbitrarily.

There are cases when Ingrid’s net balance will not be neutral if the force settling of vc state does not
settle with the same . To handle this, Ingrid should always settle each channel with the same vc state,δ

︿

and if a newer one is presented to either channel then she should update the other accordingly if γ
.end-users counterparty is byzantine. She must also be sure not to sign updates to the lc state that reflect
an incorrect state of the vc (don’t sign the lc update to close the vc until both alice and bob agree on final
vc-state).

Is it okay to allow any party who initiates an exit to close the channel at anytime. We reason this is
acceptable for payment hubs between humans as the intermediary hub Ingrid is incentivised to not close
channels before Alice and Bob are ready as fees may be collected for the service.

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 10
Nathan Ginnever: nathan@finalitylabs.io

PoC Solidity Implementation
https://github.com/finalitylabs/set-virtual-channels

References
[1] Ethereum Team. Solidity Documentation, Release 0.4.11.

https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf​ (2017)

[2] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments.
Draft version 0.5.9.2
https://lightning.network/lightning-network-paper.pdf​ (2016)

[3] Perun: Virtual Payment Hubs over Cryptographic Currencies
https://eprint.iacr.org/2017/635.pdf​ (2018)

[4] Machinomy v2: Generalized State Channels over Ethereum
https://docs.google.com/document/d/13Asq2h79AzZwUidfwI5KxnC7twLNExuCWQ7ZLqksv_I/edit#

(2018)

[5] Raiden Network: Hashlock payment hubs over Ethereum
https://raiden.network/101.html​ (2016)

[6] Jeff Coleman: State Channels
https://www.jeffcoleman.ca/state-channels/​ (2015)

[7] Perun: Foundations of State Channels Networks
https://eprint.iacr.org/2018/320​ (2018)

Set: Hub-and-Spoke Cryptographic Payment Channels (v0.0.1) 11
Nathan Ginnever: nathan@finalitylabs.io

https://github.com/finalitylabs/set-virtual-channels
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2017/635.pdf
https://docs.google.com/document/d/13Asq2h79AzZwUidfwI5KxnC7twLNExuCWQ7ZLqksv_I/edit#
https://raiden.network/101.html
https://www.jeffcoleman.ca/state-channels/
https://eprint.iacr.org/2018/320

